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SECTION A
Answer ALL questions.                                                                 (10 x 2 =20 marks)
1. Define a function.

2. What is a monotonic sequence?

3. State the comparison test for convergence of a series.

4. Define probability generating function of a random variable.

5. How is the variance of a random variable obtained from its moment generating function?

6. Define the derivative of a function at a point.

7. What do you mean by probability distribution function of a random variable?

8. Does the series  
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    (x ≥ 1) converge?

9. Define rank of a matrix.

10. Define symmetric matrix and give an example.
SECTION B
Answer any FIVE questions.                                                         (5 x 8 =40 marks)
11. If   
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 , then prove the following:

(i) 
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12. Prove that the sequence {an} defined by an =  
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   is convergent.

13. Consider the experiment of tossing a biased coin with P (H) = ⅓, P (T) = ⅔ until a head appears. Let X = number of tails preceding the first head. Find moment generating function of X.

14. Show that if a function is derivable at a point, then it is continuous at that point.

15. Verify Lagrange’s mean value theorem for the following function:

        f(x) = x2 -3 x + 2 in [-2, 3]

16. When is a set of n vectors said to be linearly independent? Find whether the vectors (1, 0, 0), (4,1,2) and (2, -1, 4) are linearly independent or not.

17. A random variable has the following probability distribution:

	X
	0
	1
	2
	3
	4
	5
	6
	7
	8

	p(x)
	k
	3k
	5k
	7k
	9k
	11k
	13k
	15k
	17k


             (i) Determine the value of k,  (ii) Find the distribution function of X.

18. Find the inverse of  A =  
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SECTION C
  Answer any TWO questions.                                                (2 x 20 =40 marks)  

19.  (i) Prove that a non decreasing sequence of real numbers which is bounded above is convergent. 

      (ii) Discuss the bounded ness of the sequence {an}where an is given by,   an = 
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20. State D’Alembert’s ratio test and hence discuss the convergence of the following series:

(i) 
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(ii) 
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21. (i) State and prove Rolle’s Theorem.

      (ii) Verify Rolle’s theorem for the following function: f (x) = x2 – 6 x - 8 in [2, 4].

22. (i) A two-dimensional random variable has a bivariate distribution given by,               

     P(X=x, Y=y) =  
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   , for x = 0,1,2,3 and y = 0, 1. Find the marginal distributions      

     of X and Y.

(ii) If P(X=x, Y=y) =   
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  , where x and y can assume only the integer values  0,    

      1 and 2. Find the conditional distribution of Y given X = x.
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